国检检测欢迎您!

微信公众号|腾讯微博|网站地图

您可能还在搜: 无损检测紧固件检测轴承检测浙江综合实验机构

社会关注

分享:激光重熔改善等离子喷涂涂层性能的研究进展

返回列表 来源:国检检测 查看手机网址
扫一扫!分享:激光重熔改善等离子喷涂涂层性能的研究进展扫一扫!
浏览:- 发布日期:2025-05-09 11:09:44【

等离子喷涂作为一种成熟的热喷涂技术,具有生产效率高、射流温度高、喷涂用材广、涂层质量好等优点,目前已经广泛应用于耐磨、耐腐蚀、耐高温氧化、绝缘、隔热、防辐射、防菌等涂层的工业生产制备中[1-3]。等离子喷涂技术通过等离子焰流高温熔化粉末,使熔融或半熔融态粒子高速冲击基体表面并沉积形成层状涂层。由于受熔融效果不良、氧化等因素影响,涂层不可避免地存在裂纹、孔隙等缺陷,进而影响到性能[4-5]。 

近年来,学者就如何消除/减少等离子喷涂涂层的缺陷,延长其使用寿命进行了大量探索研究[6-8]。目前主要的研究思路包括调整喷涂工艺参数[9],使用小颗粒添加剂对缺陷进行填充[10],对等离子喷涂涂层进行热处理[11]或激光重熔处理[12]等。激光重熔采用高能量束使涂层快速熔化后凝固[13],促进涂层重熔后再结晶,能够有效细化晶粒、降低孔隙率、减少裂纹,使涂层与基体由机械结合向冶金结合转变,并且重熔过程中还会形成新物相,进而改善涂层性能。作为一种成熟的改性手段,激光重熔被广泛应用于各类金属、陶瓷涂层的改性上[14-17],激光重熔过程中涂层微观结构及物化性能演变研究已成为国内外相关学科研究的热点。 

为了给相关研究人员提供参考,作者总结了激光重熔改性等离子喷涂金属、陶瓷和复合材料涂层的研究进展,探讨了目前研究中存在的问题,并对未来研究方向进行展望。 

钼、钨、钛等金属因具有强度和硬度高等特点,在工业中常用作等离子喷涂原料,形成的涂层韧性高,耐热强度和耐腐蚀性能突出[18-21]。但是,等离子喷涂金属单质涂层中存在微裂纹及孔隙等缺陷,组织均匀性和致密性较差。通常可通过激光重熔后处理来有效减少涂层中的缺陷,从而改善涂层性能。MANJUNATHA等[22]研究发现:对等离子喷涂钼涂层进行激光重熔处理后,涂层孔隙率由10.83%降至1.34%,显微硬度由630 HV提高至750 HV,10~50 N载荷下的磨损体积损失降至重熔前的1/4~1/3,涂层与基体间由弱机械结合转变为冶金结合。王进[23]研究发现,等离子喷涂铝涂层经1 000 W功率激光重熔后与钝钛基体形成冶金结合,涂层主要组成相为TiAl3,在高温氧化过程中,该相可以提供足够铝元素与氧元素结合生成Al2O3氧化膜,从而显著提高高温下的抗氧化性能。 

相比等离子喷涂金属单质涂层,等离子喷涂合金涂层除了会出现气孔和裂纹等缺陷外,若原料为金属单质混合粉末,还会出现因冷速过快导致的各组分无法完全反应形成合金相而影响涂层性能的问题。对等离子喷涂合金涂层进行激光重熔,可以使半熔融或未熔融的金属单质相发生二次反应,生成新的合金相,从而提高涂层硬度、耐腐蚀性等性能。?LIWI?SKI等[24]研究发现,激光重熔后,等离子喷涂Cr-Ni-Re合金涂层的结构和化学成分趋于均匀,孔隙率由重熔前的5.6%降至0.2%。XU等[25]研究发现,对等离子喷涂NiAl合金涂层进行激光重熔可以消除涂层中的单质镍和铝,生成晶粒尺寸均匀的AlNi3相,涂层硬度达到(492.4±16.2) HV,是重熔前的3倍。LIAO等[26]研究发现,激光重熔能将镍和铜纯金属相转变为NiCu合金相和CuO相,相比重熔前,重熔后涂层自腐蚀电位增大,自腐蚀电流密度降低,耐腐蚀性提升。除传统合金外,激光重熔也被用于对新兴的高熵合金(HEA)涂层进行处理。研究[27-29]发现,对等离子喷涂高熵合金涂层进行激光重熔,可以促进二次反应形成硬质相,起到强化作用。JIN等[27]对FeCoCrNiAl0.5Si2.0高熵合金涂层进行了激光重熔,发现涂层中形成了Cr3Si硬质相,且面心立方相向硬度更高的体心立方相转变,晶粒细化,显微硬度由未重熔的500 HV提高至1 100 HV。JIN等[29]进一步对AlCoCrFeNi(TiN)高熵合金涂层进行激光重熔,发现涂层中形成了新物相(Al2O3+TiN),涂层晶粒得到细化,显微硬度最高达到851 HV,几乎达到重熔前的两倍。 

目前,关于激光重熔改善等离子喷涂金属涂层硬度及耐磨性等的研究已取得一定成果。但是,金属涂层面临的服役环境越来越严苛,对于耐高温、耐腐蚀、耐磨蚀、耐氧化、抗菌等性能的要求也越来越高,采用激光重熔改性金属材料涂层,能够顺应未来发展方向,扩大激光重熔和等离子喷涂相结合的应用范围。 

等离子喷涂陶瓷涂层具有高熔点、高硬度、高耐磨性、高耐氧化性等优点[30]。但是,陶瓷硬质相颗粒和内应力的存在会引起等离子喷涂陶瓷涂层微裂纹的萌生和扩展,导致涂层过早失效。激光重熔能够精确控制能量输入,其较高的凝固速率有利于形成细枝晶微观结构,促进晶粒重新均匀分布,从而改善等离子喷涂陶瓷涂层的性能[31-32]。 

激光重熔可以促进元素在基体与涂层间扩散,使基体和涂层形成冶金结合,未熔化颗粒和层状结构转变为树枝状晶体,消除涂层微观结构的不均匀性[33]。崔静等[34]研究发现,对等离子喷涂氧化钇稳定氧化锆涂层进行激光重熔后,涂层基体组织自上而下依次由条状晶、针状晶变为细小的针状晶、珠光体,显微硬度高达2 111 HV,约为重熔前的3倍。YANG等[35]研究发现,激光重熔在消除等离子喷涂Al2O3-40%TiO2(质量分数,下同)涂层中层状缺陷的同时,将亚稳相γ-Al2O3转变为稳定相α-Al2O3,显微硬度由460~630 HV提高至980~1 000 HV,分布也更加均匀。DAS等[36]研究发现,由于激光重熔后涂层中的层状结构消失,其表面粗糙度由6~8 µm降至1~2 µm,孔隙率相比重熔前降低了90%以上,显微硬度提高了28%。此外,激光能量密度、冷却速率等激光重熔工艺参数对涂层改性效果存在较大影响。YU等[37]研究发现,随着激光能量密度增加,激光重熔等离子喷涂Al2O3-20%ZrO2涂层的显微硬度提高。 

等离子喷涂陶瓷涂层具有优异的耐磨性能,常用于机械零部件表面防护[38]。陶瓷材料的摩擦学性能在很大程度上取决于物相组成、晶粒尺寸、气孔数量、微裂纹等组织特征。激光重熔可以消除陶瓷材料中的疏松结构、气孔等缺陷,从而改善等离子喷涂陶瓷涂层的摩擦学性能。DAS等[39]研究了激光重熔等离子喷涂Al2O3和Cr2O3涂层的抗划伤性能和失效机制,结果表明:激光重熔使涂层中的层状组织转变为柱状组织,使涂层结构更加致密;相比重熔前,激光重熔后Al2O3和Cr2O3涂层的体积磨损率分别降低80%,76%,主要失效机制是塑性变形、拉伸开裂和层裂。ZHOU等[33]研究发现,等离子喷涂Al2O3–13%TiO2涂层经激光重熔后,在磨损过程中质量损失变化很小,且仅为重熔前的1/2~1/3。HAZRA等[40]研究发现,激光重熔显著降低了等离子喷涂锆刚玉(Al2O3–ZrO2)涂层的摩擦因数。 

等离子喷涂热障涂层(TBCs)是一种陶瓷涂层,沉积在耐高温金属或超合金等材料表面,起到隔热作用,广泛用于发动机涡轮叶片等热端部件。TBCs中孔隙和微裂纹的存在,会导致其在热循环过程中生成热生长氧化物(TGO),损坏其抗热震性,引发部件失效[41]。激光重熔可以减少TBCs中的未熔融颗粒、气孔、微裂纹等缺陷,增加致密性,阻碍氧原子进入,从而提高抗热震性能。FENG等[42]对激光重熔等离子喷涂ZrO2-Y2O3(YSZ)和La2Zr2O7热障涂层进行1 100 ℃高温氧化试验,结果表明,氧原子难以通过外部致密的重熔涂层进入内部黏结涂层,相比重熔前,涂层中TGO含量增速慢且厚度较薄,有效降低了氧化质量增加,提高了涂层的耐高温氧化性。FENG等[41]还研究了影响YSZ热障涂层抗热震性的因素,发现影响因素主要包括TGO相变应力、生长应力及其与黏结涂层之间的热失配应力,激光重熔可以降低TGO生长应力及其与黏结涂层之间的热失配应力,从而降低YSZ热障涂层的层裂倾向,进而提高抗热震性。DAS等[43]通过拉曼光谱法表征了激光重熔等离子喷涂YSZ热障涂层的残余应力演变,结果表明,激光重熔后涂层具有较低的残余拉伸应力(0.2~0.9 GPa),其硬度、断裂韧度和弹性模量分别提高了33%,42%,47%,这些性能的改善都有利于热障涂层抗热震性的提高。 

内应力是影响等离子喷涂热障涂层抗热震性的主要因素,激光重熔能够释放内应力,从而有效提高涂层的工作寿命。后期可尝试在激光重熔过程中加入稀土元素,优化等离子喷涂热障涂层的物相结构,从而进一步改善抗热震性能。 

激光重熔除了显著改善等离子喷涂陶瓷涂层的硬度、耐磨性和抗热震性外,还会对涂层的导热性和耐腐蚀性等其他关键性能产生积极影响[44-47]。XU等[48]研究了激光重熔等离子喷涂纳米Al2O3-13%TiO2涂层中晶粒的生长特性,发现纳米颗粒生长对温度非常敏感,重熔层上部的纳米颗粒长大为亚微米颗粒,而重熔层下部的颗粒仍保持其纳米级尺寸,在较优的工艺参数下,激光重熔可获得具有细小等轴晶的重熔层。CUBERO等[49]研究发现,激光重熔等离子喷涂Al2O3涂层由上部的致密重结晶氧化铝层和靠近铜基体的多孔层组成,与重熔前相比,重熔后涂层的热性能在40~70 K范围内得到显著改善,其传热系数高达9 500~15 500 W·m−2·K−1。虞礼嘉等[50]研究发现,在950 ℃下75%Na2SO4+25%NaCl混合熔盐中,激光重熔后等离子喷涂热障涂层的耐热腐蚀时间(100 h)远长于重熔前(50 h)。 

复合材料可以同时发挥基体相与增强相材料的优点,克服单一材料的缺陷,扩大使用范围,被广泛应用于航空航天、汽车、电子电气、建筑等领域[51-52]。对等离子喷涂复合材料涂层进行激光重熔,可以消除涂层孔隙率高、质地不均匀、与基体结合力弱等缺陷,充分发挥复合材料优势[53-54]。 

赵运才等[55]研究发现:激光重熔消除了等离子喷涂WC/Fe复合涂层中的层状结构和孔隙等缺陷,重熔层顶部组织为等轴晶和细小枝晶,底部组织为胞状晶,涂层与基体结合区组织为粗大的树枝晶,二者形成了冶金结合;激光重熔层中形成了M23C6和Ni6BSi2等硬质相,涂层平均显微硬度高达1 500 HV,约为重熔前的2倍,室温体积磨损率(8.5×10−5 mm3·N−1·m−1)约为重熔前(25.13×10−5 mm3·N−1·m−1)的1/3。何文等[56]研究发现,等离子喷涂WC/Ni涂层经激光重熔后,WC再次发生分解,生成W2C等新的硬质相,与周围的镍形成“软基相+硬质点”组合,孔隙率由重熔前的7.02%降至3.08%,涂层的耐磨性和显微硬度显著提高。 

激光重熔参数的选择对改善等离子喷涂复合材料涂层性能有着重要影响。上官绪超等[57]研究了激光功率对重熔等离子喷涂WC/Fe复合涂层组织及摩擦学性能的影响,发现:当激光功率为800 W时,涂层中各元素分布均匀,且原位生成的M7C3和FeSi等新物相弥散分布于奥氏体晶间,涂层组织最致密;600,800,1 000 W功率下激光重熔后涂层的平均摩擦因数分别为0.22,0.11,0.43,均明显低于重熔前(0.81),激光重熔提高了涂层的耐磨性,且800 W功率下改性效果最好。赵运才等[58]研究了扫描速度对激光重熔等离子喷涂金属陶瓷复合涂层组织与性能的影响,发现:当扫描速度过低时,加热时间较长,能量吸收及熔池深度较大,稀释率较高;当扫描速度过高时,材料内部热量不足,导致未熔颗粒残留并产生气孔,孔洞和裂纹等缺陷较多;当扫描速度为750 mm·min−1时涂层组织最佳。赵运才等[59]还进一步研究了重熔轨迹对激光重熔等离子喷涂铁基Ni/WC涂层组织和性能的影响,结果表明,圆形激光重熔轨迹下涂层的孔隙率较小,显微硬度和磨损质量损失分别为打点激光重熔轨迹涂层的1.4倍和33.7%。 

综上所述,激光重熔除了对等离子喷涂复合材料涂层起到晶粒细化作用外,还能够促使涂层与基体间形成均匀分布的新物相,从而改善复合材料涂层的性能。激光参数的优化可以使激光重熔效果得到显著提升。 

等离子喷涂技术以其高效、灵活和广泛的应用性,在工业涂层制备领域占据了重要地位,常见的等离子喷涂涂层包括金属涂层、陶瓷涂层、复合材料涂层等。然而,等离子喷涂涂层中常会产生孔隙、裂纹、层状结构等缺陷,并且涂层与基体常为弱机械结合,限制了涂层性能的进一步提升。激光重熔作为一种有效的后处理方法,可通过细化晶粒、促进冶金结合以及生成新物相等方式显著提高等离子喷涂涂层的硬度、耐磨、抗热震等性能。 

目前,激光重熔改性等离子喷涂涂层的发展仍面临以下问题:激光重熔过程中的温度场、应力场等难以进行实时监测;激光辐照导致熔池区域温度梯度大,由此产生的热应力易使等离子喷涂涂层产生裂纹和剥落[60-61];激光重熔工艺参数的选择会很大程度上影响重熔效果,工艺参数与重熔效果之间的关系尚未研究透彻。针对以上问题,未来可着眼于以下几个方面的工作: 

(1)将ANSYS、Abaqus、Comsol等模拟软件与实际激光重熔等离子喷涂试验相结合,对温度场、应力场等难以实时监测的数据进行模拟,根据模拟结果优化工艺及材料组成。 

(2)探索激光重熔过程中涂层的开裂和剥落机理,辅以其他工艺措施,降低重熔后冷却速率和温度梯度,改善重熔涂层开裂敏感性。 

(3)合理优化激光重熔工艺参数,加强研究各参数间相互作用,以期通过最优工艺组合减少重熔涂层缺陷,提高重熔涂层综合性能。




文章来源——材料与测试网

推荐阅读

    【本文标签】:涂层 高熵合金 陶瓷 性能检测 检测金属 合金检测 涂层厚度 性能测试 检测公司
    【责任编辑】:国检检测版权所有:转载请注明出处

    最新资讯文章

    关闭